Quantitative computed tomography-based finite element models of the human lumbar vertebral body: effect of element size on stiffness, damage, and fracture strength predictions.

نویسندگان

  • R Paul Crawford
  • William S Rosenberg
  • Tony M Keaveny
چکیده

This study investigated the numerical convergence characteristics of specimen-specific "voxel-based" finite element models of 14 excised human cadaveric lumbar vertebral bodies (age: 37-87; M = 6, F = 8) that were generated automatically from clinical-type CT scans. With eventual clinical applications in mind, the ability of the model stiffness to predict the experimentally measured compressive fracture strength of the vertebral bodies was also assessed. The stiffness of "low"-resolution models (3 x 3 x 3 mm element size) was on average only 4% greater (p = 0.03) than for "high"-resolution models (1 x 1 x 1.5 mm) despite interspecimen variations that varied over four-fold. Damage predictions using low- vs high-resolution models were significantly different (p = 0.01) at loads corresponding to an overall strain of 0.5%. Both the high (r2 = 0.94) and low (r2 = 0.92) resolution model stiffness values were highly correlated with the experimentally measured ultimate strength values. Because vertebral stiffness variations in the population are much greater than those that arise from differences in voxel size, these results indicate that imaging resolution is not critical in cross-sectional studies of this parameter. However, longitudinal studies that seek to track more subtle changes in stiffness over time should account for the small but highly significant effects of voxel size. These results also demonstrate that an automated voxel-based finite element modeling technique may provide an excellent noninvasive assessment of vertebral strength.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Prediction of Human Vertebral Compressive Strength Using Quantitative Computed Tomography Based Nonlinear Finite Element Method

Introduction: Because of the importance of vertebral compressive fracture (VCF) role in increasing the patients’ death rate and reducing their quality of life, many studies have been conducted for a noninvasive prediction of vertebral compressive strength based on bone mineral density (BMD) determination and recently finite element analysis. In this study, QCT-voxel based nonlinear finite eleme...

متن کامل

Effects of Scan Resolutions and Element Sizes on Bovine Vertebral Mechanical Parameters from Quantitative Computed Tomography-Based Finite Element Analysis

Quantitative computed tomography-based finite element analysis (QCT/FEA) has been developed to predict vertebral strength. However, QCT/FEA models may be different with scan resolutions and element sizes. The aim of this study was to explore the effects of scan resolutions and element sizes on QCT/FEA outcomes. Nine bovine vertebral bodies were scanned using the clinical CT scanner and reconstr...

متن کامل

Predicting strengths of the femur and vertebra in patients with postmenopausal osteoporosis by a CT based finite element method - The predicted fracture load of the proximal femur is correlated with that of the lumber vertebra -

Introduction: Clinically available methods for estimating bone strength include bone densitometry techniques such as dual energy X-ray absorptiometry and peripheral quantitative computed tomography, and other diagnostic imaging procedures such as radiographic imaging. These techniques evaluate regional bone density and morphology, which are partly related to fracture risk, but are of limited va...

متن کامل

Multi-Scale Modeling of the Human Vertebral Body: Comparison of Micro-CT Based High-Resolution and Continuum-Level Models

The overall goal of this study was to assess the mechanistic fidelity of continuum-level finite element models of the vertebral body, which represent a promising tool for understanding and predicting clinical fracture risk. Two finite element (FE) models were generated from micro-CT scans of each of 13 T9 vertebral bodies--a micro-FE model at 60-micron resolution and a coarsened, continuum-leve...

متن کامل

Stress Analysis of the Human Ligamentous Lumber Spine-From Computer-Assisted Tomography to Finite Element Analysis

Detailed investigation on biomechanics of a complex structure such as the human lumbar spine requires the use of advanced computer-based technique for both the geometrical reconstruction and the stress analysis. In the present study, the computer-assisted tomography (CAT) and finite element method (FEM) are merged to perform detailed three dimensional nonlinear analysis of the human ligamentous...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of biomechanical engineering

دوره 125 4  شماره 

صفحات  -

تاریخ انتشار 2003